Reference: Li C, et al. (1998) Protein N-arginine methylation in adenosine dialdehyde-treated lymphoblastoid cells. Arch Biochem Biophys 351(1):53-9

Reference Help

Abstract


Protein arginine methyltransferase was recently identified to be associated with some proteins in signal transduction pathways. N-Arginine methylation in RNA binding proteins with arginine- and glycine-rich RGG motifs is known to be the major protein methylation in cells. Considering that arginine methylation might be involved in certain human disorders, we used human lymphoblastoid cells that can be easily prepared from lymphocytes as a model system to study the methylation. Lymphoblastoid cells grown in the presence of 20 microM indirect methyltransferase inhibitor adenosine dialdehyde (AdOx) for 72 h appeared to accumulate high levels of hypomethylated proteins for the endogenous protein methyltransferase or recombinant glutathion S-transferase-fused yeast arginine methyltransferase (RMT1). Analysis of methyl-accepting polypeptides in AdOx-treated lymphoblastoid cells by SDS-PAGE and fluorography showed that many polypeptides between 29,000 and 90,000 Da were methylated by the endogenous methyltransferase. A few polypeptides could be methylated to a higher extent upon the addition of yeast GST-RMT1 fusion protein. A peptide (GGRGRGGGF) could compete for the majority of the methyl-accepting protein substrates in the AdOx-treated lymphoblastoid cell extracts, whether or not exogenous yeast RMT1 was included in the reaction. When the arginine residues in the peptide were replaced by lysine, no competition was observed. The results indicated that the protein methyl acceptors in lymphoblastoid cells share similar RGG motifs and that arginine residues should be the site of methylation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Li C, Ai LS, Lin CH, Hsieh M, Li YC, Li SY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference