Reference: Simola M, et al. (2000) Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Mol Microbiol 37(1):42-53

Reference Help

Abstract


Saccharomyces cerevisiae cells grown at physiological temperature 24 degrees C require preconditioning at 37 degrees C to acquire tolerance towards brief exposure to 48-50 degrees C. During preconditioning, the cytosolic trehalose content increases remarkably and in the absence of trehalose synthesis yeast cannot acquire thermotolerance. It has been speculated that trehalose protects proteins and membranes under environmental stress conditions, but recently it was shown to assist the Hsp104 chaperone in refolding of heat-damaged proteins in the yeast cytosol. We have demonstrated that heat-denatured proteins residing in the endoplasmic reticulum (ER) also can be refolded once the cells are returned to physiological temperature. Unexpectedly, not only ER chaperones but also the cytosolic Hsp104 chaperone is required for conformational repair events in the ER lumen. Here we show that trehalose facilitates refolding of glycoproteins in the ER after severe heat stress. In the absence of Tps1p, a subunit of trehalose synthase, refolding of heat-damaged glycoproteins to bioactive and secretion-competent forms failed or was retarded. In contrast, membrane traffic operated many hours after severe heat stress even in the absence of the TPS1 gene, demonstrating that trehalose had no role in thermoprotection of membranes engaged in vesicular traffic. However, cytosolic proteins were aggregated and protein synthesis abolished, resulting finally in cell death.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Simola M, Hänninen AL, Stranius SM, Makarow M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference