Reference: Pierrat B, et al. (1992) Functional analysis of the human estrogen receptor using a phenotypic transactivation assay in yeast. Gene 119(2):237-45

Reference Help

Abstract


We have constructed yeast strains in which the expression of the Saccharomyces cerevisiae URA3 gene is induced by the human estrogen receptor (hER). Promoter sequences required for both basal and activated transcription of URA3 were replaced with one or three estrogen-response elements (EREs) positioned upstream of the native TATA box. These constructs were each integrated at the TRP1 locus of a yeast strain in which the natural URA3 gene had been deleted, and the integrants were transformed with low- or high-copy-number shuttle plasmids expressing wild-type or truncated derivatives of hER. Transformants were assayed for growth on uracil-deficient medium plus or minus estradiol (E2), for resistance to 5-fluoroorotic acid (5-FOA) and for activity of OMPdecase (orotidine-5'-monophosphate decarboxylase), the product of the URA3 gene. We show that the growth and 5-FOA-resistance (5-FOAR) phenotypes of these strains are strictly dependent upon the function of the receptor derivatives. Induction of URA3, measured by OMPdecase activity, was observed over a 20- to 2500-fold range depending on the receptor derivative, its expression level and the number of EREs in the responsive promoter. Both one- and three-ERE reporter strains expressing the full-length receptor are completely E2-dependent for growth, and display a 5-FOAR phenotype in the absence of the hormone. We demonstrate that the individual hER transactivation functions, TAF1 and TAF2, are both functional in yeast, and that the hormone-dependent TAF2 is the more potent activator on our reporters. We show that hER displays strong homosynergism in yeast, and discuss the contributions of the two TAFs in hER synergism.(ABSTRACT TRUNCATED AT 250 WORDS)

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pierrat B, Heery DM, Lemoine Y, Losson R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference