Reference: Kotyk A and Dvoráková M (1990) Transport of L-tryptophan in Saccharomyces cerevisiae. Folia Microbiol (Praha) 35(3):209-17

Reference Help

Abstract


In addition to the general amino acid transport system (GAP) of S. cerevisiae L-tryptophan is transported by another system with approximately 25% capacity of GAP, with a KT of 0.41 +/- 0.08 mmol/L and with a similar specificity as GAP (lower inhibition by Met, Pro, Ser, Thr and 2-aminoisobutyric acid; greater inhibition by Glu and His). The pH optimum of this system is at 5.0-5.5, activation energy above the transition point (20 degrees C) was 20 kJ/mol, below the transition point 55 kJ/mol. The transport by this system was virtually unidirectional, efflux amounting to at most 10% into a tryptophan-free medium. The transport itself was blocked by 2,4-dinitrophenol, antimycin A and uranyl nitrate. The system was synthesized de novo during preincubation with glucose = fructose greater than trehalose greater than ethanol within 30 min, and was degraded with a half-time of 15 min in the absence of further synthesis. The accumulation ratios of L-tryptophan in gap1 mutants were concentration-dependent (200:1 at 1 mumol L-Trp/L, 4:1 at 2.5 mmol L-Trp/L) and decreased with increasing suspension density from 200:1 to 5:1 (for 10 mumol L-Trp/L). The involvement of hydrogen ions in the uptake was clearly demonstrated by the effect of D2O even if it could not be established by either shifts of pHout or membrane depolarization.

Reference Type
Journal Article
Authors
Kotyk A, Dvoráková M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference