Reference: Lee J, et al. (1996) Transcriptional remodeling and G1 arrest in dioxygen stress in Saccharomyces cerevisiae. J Biol Chem 271(40):24885-93

Reference Help

Abstract


Saccharomyces cerevisiae, which lack a functional SOD1 gene, encoding the cytosolic Cu,Zn-superoxide dismutase (SOD1), exhibit a variety of metabolic defects in aerobic but not in anaerobic growth. We test here the hypothesis that some of these defects may be due to specific transcriptional changes programmed for cell survival under dioxygen stress. Analysis of the budding pattern and generation time showed that the slower proliferation of an sod1Delta mutant strain under air was due to an increase from 42 to 89 min spent in the G1 phase of the cell cycle. This delay in G1 was not due to an overall decline in biosynthetic activity since total protein and mRNA synthesis was not reduced even under 100% O2. However, rRNA synthesis was strongly decreased, e.g. by 80% in the mutant under 100% O2 (in comparison to N2). Under these conditions, the mutant permanently arrested in G1; this arrest was due to an inhibition of the Start function that prepares yeast for S phase. This Start arrest was due to an inhibition of transcription of the autoregulated G1 cyclins, CLN1 and CLN2; the transcription of the constitutive G1 cyclin, CLN3, was unaffected by the stress. Expression of a hyperstable Cln3 prevented the G1 arrest, indicating that it was due solely to the inhibition of cell cycle-dependent cyclin expression. This remodeling of transcription in oxidative stress was seen also in the inhibition of glucose derepression of SUC2 expression. In contrast, the signaling and activation of mating pheromone (FUS1) and copper-responsive (CUP1) promoter activity were not affected by dioxygen stress, while genes encoding other anti-oxidant enzymes (SOD2, CTT1 and CTA1) were strongly induced. The UBI loci, encoding ubiquitin, were particularly good examples of this pattern of negative and positive transcriptional response to the stress. UBI1-UBI3 expression was repressed in the mutant under 100% O2, while expression of UBI4 was strongly induced. The data demonstrate that extensive remodeling of transcription occurs in yeast under a strong dioxygen stress. This remodeling results in a pattern of expression of gene products needed for defense and repair, and suppression of activities associated with normal proliferative growth.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Lee J, Romeo A, Kosman DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference