Reference: Leidich SD, et al. (1995) Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J Biol Chem 270(22):13029-35

Reference Help

Abstract


To identify genes required for the synthesis of glycosyl phosphatidylinositol (GPI) membrane anchors in yeast, we devised a way to isolate GPI anchoring mutants in which colonies are screened for defects in [3H]-inositol incorporation into protein. The gpi1 mutant, identified in this way, is temperature sensitive for growth and defective in vitro in the synthesis of GlcNAc-phosphatidylinositol, the first intermediate in GPI biosynthesis (Leidich, S. D., Drapp, D. A., and Orlean, P. (1994) J. Biol. Chem. 269, 10193-10196). We report the isolation of two more conditionally lethal mutants, gpi2 and gpi3, which, like gpi1, have a temperature-sensitive defect in the incorporation of [3H]inositol into protein and which lack in vitro GlcNAc-phosphatidylinositol synthetic activity. Haploid Saccharomyces cerevisiae strains containing any pairwise combination of the gpi1, gpi2, and gpi3 mutations are inviable. The GPI2 gene, cloned by complementation of the gpi2 mutant's temperature sensitivity, encodes a hydrophobic 269-amino acid protein that resembles no other gene product known to participate in GPI assembly. Gene disruption experiments show that GPI2 is required for vegetative growth. Overexpression of the GPI2 gene causes partial suppression of the gpi1 mutant's temperature sensitivity, a result that suggests that the Gpi1 and Gpi2 proteins interact with one another in vivo. The gpi3 mutant is defective in the SPT14 gene, which encodes a yeast protein similar to the product of the mammalian PIG-A gene, which complements a GlcNAc-phosphatidylinositol synthesis-defective human cell line. In yeast, at least three gene products are required for the first step in GPI synthesis, as is the case in mammalian cells, and utilization of several different proteins at this stage is therefore likely to be a general characteristic of the GPI synthetic pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Leidich SD, Kostova Z, Latek RR, Costello LC, Drapp DA, Gray W, Fassler JS, Orlean P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference