Reference: Lee J, et al. (1999) Novel secretion system of recombinant Saccharomyces cerevisiae using an N-terminus residue of human IL-1 beta as secretion enhancer. Biotechnol Prog 15(5):884-90

Reference Help

Abstract


An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lee J, Choi SI, Jang JS, Jang K, Moon JW, Bae CS, Yang DS, Seong BL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference