Reference: Hottiger T, et al. (1994) Physiological characterization of the yeast metallothionein (CUP1) promoter, and consequences of overexpressing its transcriptional activator, ACE1. Yeast 10(3):283-96

Reference Help

Abstract


Using the anticoagulant, hirudin, from the leech Hirudo medicinalis as a secreted reporter protein, the influence of physiological parameters on activity and regulation of the yeast (Saccharomyces cerevisiae) metallothionein (CUP1) promoter was studied. Induction of CUP1-directed hirudin expression from 2 mu-based vectors was possible at any time point during diauxic batch growth, even in cells approaching stationary phase. The highest titers of hirudin were obtained when the CUP1 promoter was activated immediately following inoculation of the cultures. If such a pseudo-constitutive fermentation strategy was adopted, the promoter was superior to an optimized variant (GAPFL) of the strong, constitutive GAPDH promoter. This superiority was primarily due to the relative independence of CUP1 promoter activity of the physiological status of host cells: whilst the maximal strength of the CUP1 and GAPFL promoters was comparable, CUP1-directed hirudin expression was high in all phases of diauxic batch growth, whereas hirudin production from the GAPFL promoter declined in post-diauxic cultures. High activity of the CUP1 promoter was observed on both a fermentable (glucose) and a non-fermentable (ethanol) carbon source. Hirudin expression could be adjusted to different levels by varying the amount of inducer (cupric sulphate) added to cultures. The copper concentrations required for maximal promoter induction had no negative effects on host growth and interfered with neither hirudin secretion nor with the biological activity of the peptide. Overexpression of the transcriptional activator, ACE1, resulted in increased levels of hirudin mRNA. Hirudin titers increased in parallel to mRNA concentrations in cultures grown in the presence of low concentrations of copper. In contrast, at high copper doses, elevated levels of the ACE1 protein resulted in inferior hirudin production. Cells overexpressing ACE1 while harbouring a CUP1-drived hirudin expression cassette showed slow growth and poor plasmid maintenance. It was tested whether this might be the result of a block in the secretory pathway; however, measurements of intracellular hirudin did not support this hypothesis. The data rather indicated that hirudin production was limited by a metabolic constraint downstream of transcription but upstream of the secretory pathway.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Hottiger T, Fürst P, Pohlig G, Heim J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference