Reference: Biswas EE, et al. (1997) Stimulation of RTH1 nuclease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry 36(20):5955-62

Reference Help

Abstract


The RTH1 nuclease is involved in the replication of chromosomal DNA as well as in the repair of DNA damage. Replication protein A (RPA) is also an integral part of the DNA replication and repair processes. We have investigated the roles(s) of RPA in the function of RTH1 nuclease, including its structure specific endonuclease activity. Initial in vitro studies, which employed a "flap" or a "pseudo Y" substrate containing a short 14 bp duplex region, showed the effect of RPA to be minimal or inhibitory. As RPA inhibition is unwarranted for a protein participating in the DNA replication process, we have further investigated the mechanism of such inhibition. Alternate flap and pseudo Y substrates with a long duplex region (50 bp) were prepared using M13mp19 ssDNA and synthetic oligonucleotides. Yeast RPA stimulated the endonuclease activity of RTH1 endonuclease with these substrates in a dose-dependent manner. Kinetic analysis suggested that yRPA exerted a bipartite effect on the nuclease reaction: (i) the "load time" of RTH1 nuclease onto the DNA substrate decreased from approximately 5 to 2 min in the presence of RPA, and (ii) following initiation of the nuclease reaction, the initial rate of the reaction increased 10-fold in the presence of yRPA. Further analysis of the interaction of RPA with various endonuclease substrates indicated that RPA has a weak helix destabilizing effect and could melt small, 14 bp, regions of duplex DNA. RTH1 endonuclease cleaves the DNA strand at the junction of single- and double-stranded DNA; consequently, the observed inhibition with small duplex substrates was likely due to duplex melting. Our studies also demonstrated that RPA stimulated the RNase H activity of RTH1 nuclease significantly. In both instances (RTH1 endonuclease and RNase H), the stimulation may involve a specific interaction of RPA with the RTH1 nuclease rather than a structural positioning of the DNA substrate by RPA.

Reference Type
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Biswas EE, Zhu FX, Biswas SB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference