Reference: Poddar A, et al. (1999) MCM21 and MCM22, two novel genes of the yeast Saccharomyces cerevisiae are required for chromosome transmission. Mol Microbiol 31(1):349-60

Reference Help

Abstract


The minichromosome maintenance genes, MCM21 and MCM22, have been cloned and are shown to code for the ORFs YDR318W and YJR135C respectively. Mutations in these genes caused a decrease in the stability of the minichromosome. This decrease in stability was associated with an increase in the copy number of the minichromosome in cells carrying it. Small circular dicentric plasmids were maintained relatively stably and structurally intact in the mutants compared with the wild-type strain. In the latter, such plasmids were mitotically unstable and, upon recovery, showed frequent rearrangements of their DNA. A centromere offered less obstruction to transcription in mutant cells than in the wild type, showing that both these mutants had a more relaxed kinetochore assembly. The mutant strains showed elevated rates of chromosome loss but not those of recombination. Both the mutations caused the cells to display a higher sensitivity towards the anti-mitotic drug benomyl. All these observations suggest that MCM21 and MCM22 are important for chromosome segregation with a potential role in kinetochore function. These genes are non-essential, as their deletions from chromosomes did not cause loss of cell viability. However, exponentially growing mutant cells carrying the deletion of the MCM21 gene had a significant population of large-budded cells with a single nucleus at the neck. Furthermore, the DNA content of these cells showed a shift towards 2N, suggesting a temporary pause of cells in G2 or in an early phase of mitosis. The mcm21 and mcm22 mutations do not show synthetic lethality or any further enhancement of growth defects, implying that they could be carrying out non-overlapping functions in chromosome segregation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Poddar A, Roy N, Sinha P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference