Reference: Ostling J, et al. (1998) Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity. Mol Gen Genet 260(2-3):269-79

Reference Help

Abstract


The Mig1 repressor is a zinc finger protein that mediates glucose repression in yeast. Previous work in Saccharomyces cerevisiae has shown that two domains in Miglp are required for repression: the N-terminal zinc finger region and a C-terminal effector domain. Both domains are also conserved in Miglp homologs from the distantly related yeasts Kluyveromyces lactis and K. marxianus, and these Mig1 proteins can fully replace the endogenous Mig1p in S. cerevisiae. We have now made a detailed analysis of the conserved C-terminal effector domain in Mig1p from K. marxianus, using expression in S. cerevisiae to monitor its function. First, a series of small deletions were made within the effector domain. Second, an alanine scan mutagenesis was carried out across the effector domain. Third, double, triple and quadruple mutants were made that affect certain residues within the effector domain. Our results show that four conserved residues within the effector domain, three leucines and one isoleucine, are particularly important for its function in vivo. The analysis further revealed that while the C-terminal effector domain of KmMig1p mediates a seven- to nine-fold repression of the reporter gene, a five- to sixfold residual effect also exists that is independent of the C-terminal effector domain. Similar results were obtained when the corresponding mutations were made in ScMig1p. Moreover, we found that mutations in these residues affect the interaction between Mig1p and the general corepressor subunit Cyc8p (Ssn6p). Modeling of the C-terminal effector domain using a protein of known structure suggests that it may be folded into an alpha-helix.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Ostling J, Cassart JP, Vandenhaute J, Ronne H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference