Reference: Cvijic ME, et al. (1998) Cisplatin sensitivity in cAMP-dependent protein kinase mutants of Saccharomyces cerevisiae. Anticancer Res 18(5A):3187-92

Reference Help

Abstract


The emergence of cisplatin resistance poses a significant problem to the treatment of a variety of human malignancies. Therefore, understanding the molecular basis of cisplatin resistance could improve the clinical effectiveness of this anticancer agent. Recently, our laboratory has demonstrated that cAMP-dependent protein kinase (PKA) mutants of the Chinese hamster ovary (CHO) and the mouse adrenocortical carcinoma Y1 cells exhibited increased resistance to cisplatin as well as other DNA-damaging drugs. Further studies showed that either the functional inactivation of PKA or the mutation in the regulatory subunit gene may cause increased recognition of cisplatin-damaged DNA and enhanced DNA repair capacity. In this study, we evaluated the role of PKA in modulating cellular sensitivity to cisplatin in a series of PKA mutants of Saccharomyces cerevisiae. Mutants with decreased kinase activity resulting from a srv2 mutation showed no alterations in cisplatin sensitivity. Complementation of TPK1 in a yeast strain containing mutant tpk1 and also tpk2 and tpk3 deletions did not significantly alter its sensitivity to this DNA-damaging agent. Yeast transformants containing increased kinase activity resulting from overexpression of RAS2Val19 or TPK1 and yeast strains having increased kinase activities due to mutations in the BCY1 gene also did not show alterations in their sensitivity to cisplatin. Therefore, results from these studies unambiguously demonstrate that changes in PKA activity have no effect on cisplatin sensitivity in Saccharomyces cerevisiae.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Cvijic ME, Yang WL, Chin KV
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference