Reference: Rizzi M, et al. (1998) A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure. Structure 6(9):1129-40

Reference Help

Abstract


Background: Nicotinamide adenine dinucleotide (NAD+) has a central role in life processes. The ubiquitous enzyme NAD+ synthetase catalyzes a key step in NAD+ biosynthesis, transforming deamido-NAD+ into NAD+ by a two-step reaction. NAD+ synthetase belongs to the amidotransferase family and has been recognized as a member of the family of N-type ATP pyrophosphatases. In order to investigate the mechanism of the reaction carried out by NAD+ synthetase we have determined a high-resolution three-dimensional structure of the Bacillus subtilis homodimeric NAD+ synthetase in complex with the trapped reaction intermediate NAD-adenylate.

Results: Two NAD-adenylate molecules and two pyrophosphate (PPi) molecules are observed in the 1.3 A resolution structure of the NAD+ synthetase-NAD-adenylate complex. Structural studies on the NAD+ synthetase-NAD-adenylate adduct and on the cation-binding sites reveal a new deamido-NAD+-binding site located at the subunit interface, locate a binuclear magnesium cluster at the ATP-binding site and, identify two monovalent cation sites, one of which may represent an ammonium-binding site.

Conclusions: Our results suggest that two different catalytic strategies have been adopted by NAD+ synthetase in the two different steps of the reaction. During the adenylation step, no protein residues seem to be located properly to directly participate in catalysis, which is likely to be carried out with the fundamental assistance of an electron-withdrawing trimetallic constellation present in the active site. A different behavior is observed for the second step, in which an ammonium ion is the binding species. In this step, Asp173 is a key residue in both deprotonation of the primarily bound ammonium ion, and stabilization of the tetrahedral transition-state intermediate. Moreover, the structural data suggest that product release can take place only after all substrates are bound to the enzyme, and product release is ultimately controlled by the conformation adopted by two mobile loops.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rizzi M, Bolognesi M, Coda A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference