Reference: Denis V and Daignan-Fornier B (1998) Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol Gen Genet 259(3):246-55

Reference Help

Abstract


Glutamine, glycine and 10-formyl tetrahydrofolate are consumed during de novo purine biosynthesis. We have found that, in Saccharomyces cerevisiae, synthesis of these cosubstrates is coregulated with synthesis of enzymes of the purine biosynthetic pathway. Analysis of three genes required for synthesis of glutamine, glycine and 10-formyl tetrahydrofolate (GLN1, SHM2 and MTD1, respectively) shows that their expression is repressed by adenine and requires the transcription factors Baslp and Bas2p. Northern analysis reveals that regulation of SHM2 and MTD1 expression by adenine takes place at the transcriptional level. We also show that Bas1p and Bas2p bind in vitro to the promoters of the SHM2 and MTD1 genes, and that mutations in the consensus Bas1p binding sequences strongly affect expression of these genes in vivo. Finally, we have found that a SHM2-lacZ fusion is expressed at a significantly higher level in a bas2-2 disrupted strain than in bas1-2 or bas1-2 bas2-2 mutant strains. The BAS1-dependent, BAS2-independent expression of SHM2-lacZ suggests that, in the absence of Bas2p, Bas1p can interact with another protein partner to activate SHM2 expression.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Denis V, Daignan-Fornier B
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference