Reference: Hall DD, et al. (1998) Regulation of the Cln3-Cdc28 kinase by cAMP in Saccharomyces cerevisiae. EMBO J 17(15):4370-8

Reference Help

Abstract


The yeast Saccharomyces cerevisiae grows at widely varying rates in different growth media. In order to maintain a relatively constant cell size, yeast cells must regulate the rate of progress through the cell cycle to match changes in growth rate, moving quickly through G1 in rich medium, and slowly in poor medium. We have examined connections between nutrients, and the expression and activity of Cln3-Cdc28 kinase that regulates the G1-S boundary of the cell cycle in yeast, a point referred to as Start. We find that Cln3 protein levels are highest in glucose and lower in poorer carbon sources. This regulation involves both transcriptional and post-transcriptional control. Although the Ras-cAMP pathway does not appear to affect CLN3 transcription, cAMP increases Cln3 protein levels and Cln3-Cdc28 kinase activity. This regulation requires untranslated regions of the CLN3 message, and can be explained by changes in protein synthesis rates caused by cAMP. A model for CLN3 regulation and function is presented in which CLN3 regulates G1 length in response to nutrients.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Hall DD, Markwardt DD, Parviz F, Heideman W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence