Reference: Lin SL, et al. (1998) Electrostatics, allostery, and activity of the yeast chorismate mutase. Proteins 31(4):445-52

Reference Help

Abstract


The predicted active site of chorismate mutase of baker's yeast Saccharomyces cerevisiae has been studied by continuum electrostatics, molecular surface/volume calculations, and molecular modeling. Our study shows that despite being subject to an allosteric transition, the enzyme's active-site pocket neither decreased in volume nor deformed significantly in shape between the active R state and the inactive T state. We find that the polar atmosphere in the pocket is responsible for the enzyme's affinity. A single amino acid, Glu23, can adequately account for the atmospheric variation. This residue swings into the active-site pocket from the R state to the T state. In the R state, Glu23 on helix H2 doubly pairs with Arg204 and Lys208 of H11, which is packed against H2. In the T state, a slide occurs between H11 and H2 such that Glu23 can no longer interact with Lys208 and competes with Asp24 for interacting with Arg204. Consequently, Glu23 is found in the T state to couple with Arg157, an active-site residue critical to substrate binding. The tandem sliding of H11 in both monomers profoundly changes the interactions in the dimer interface. The loop between H11 and H12 demonstrates the largest conformational change. Hence, we establish a connection between the allosteric transition and the activity of the enzyme. The conformational change in the transition is suggested to propagate into the active-site pocket via a series of polar interactions that result in polarity reversal in the active-site pocket, which regulates the enzyme's activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Lin SL, Xu D, Li A, Nussinov R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence