Reference: Umebayashi K, et al. (1997) Accumulation of misfolded protein aggregates leads to the formation of russell body-like dilated endoplasmic reticulum in yeast. Yeast 13(11):1009-20

Reference Help

Abstract


RNAP-1, an aspartic proteinase from a filamentous fungus Rhizopus niveus, is secreted very efficiently in Saccharomyces cerevisiae. It is synthesized first as a precursor form with signal sequence and prosequence in its amino-terminus. Our previous study indicated that the prosequence of RNAP-I had important roles in its correct folding and secretion in yeast, and that a prosequence-deleted derivative of RNAP-I, delta pro, was not secreted but was retained and degraded in the yeast endoplasmic reticulum (ER). In the present study, we show that the accumulation of delta pro in the yeast ER caused elevated synthesis of ER resident chaperones, indicating that delta pro is recognized as an unfolded protein species in the ER. Our biochemical data demonstrated that delta pro formed aggregates which contained BiP, but not protein disulfide isomerase (PDI), in the ER. Immunoelectron microscopical analysis revealed that the delta pro aggregates were indeed visible as electron-dense regions in the ER and nuclear envelope. Such 'chaperone-associated misfolded protein bodies' were observed for the first time in yeast. Morphologies of the ER and nucleus were drastically altered by the accumulation of the delta pro aggregates. The ER lost its flat cisternal shape; the ER lumen extended aberrantly and the ER membrane irregularly proliferated. The misfolded delta pro proteins are probably sorted from the ordinary ER lumen to form the aggregates so that the ER function would not be grossly impaired, and the dilated ER may represent an ER subcompartment where the delta pro aggregates are degraded.

Reference Type
Journal Article
Authors
Umebayashi K, Hirata A, Fukuda R, Horiuchi H, Ohta A, Takagi M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference