Reference: Tsukamoto Y, et al. (1997) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388(6645):900-3

Reference Help

Abstract


DNA double-strand breaks are repaired by homologous recombination or DNA end-joining, but the latter process often causes legitimate recombination and chromosome rearrangements. One of the factors involved in the end-joining process is Hdf1, a yeast homologue of Ku protein. We used the yeast two-hybrid assay to show that Hdf1 interacts with Sir4, which is involved in transcriptional silencing at telomeres and HM loci. Analyses of sir4 mutants showed that Sir4 is required for deletion by illegitimate recombination and DNA end-joining in the pathway involving Hdf1. Sir2 and Sir3, but not Sir1, were also found to participate in these processes. Furthermore, mutations of the SIR2, SIR3 and SIR4 genes conferred increased sensitivity to gamma-radiation in a genetic background with a mutation of the RAD52 gene, which is essential for double-strand break repair mediated by homologous recombination. These results indicate that Sir proteins are involved in double-strand break repair mediated by end-joining. We propose that Sir proteins act with Hdf1 to alter broken DNA ends to create an inactivated chromatin structure that is essential for the rejoining of DNA ends.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tsukamoto Y, Kato J, Ikeda H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence