Reference: Brasseur G, et al. (1997) The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Eur J Biochem 246(1):103-11

Reference Help

Abstract


The nuclear ABC1 gene was isolated as a multicopy suppressor of a cytochrome b mRNA translation defect. Its inactivation leads to a respiratory deficiency suggesting a block in the bc1 segment of the respiratory chain [Bousquet, I., Dujardin, G. & Slonimski, P. P. (1991) EMBO J. 10, 2023-2031]. In the present study, we established that deleting the ABC1 chromosomal gene from Saccharomyces cerevisiae does not prevent the assembly of the bc1 complex (complex III) but markedly impairs the kinetics of its high-potential electron transfer pathway occurring on the positive, outer, side of the membrane, which results in reduced activity of the bc1 complex. In addition, the activity of complex II and its cytochrome b560 decrease drastically and complex IV activity is halved. It is also observed that the binding of the quinol to the bc1 complex ubiquinol oxidation site is affected and that adding exogenous quinones partially compensates for the respiratory deficiency in vitro, although the quinone content of mutant and wild-type mitochondria are similar. Lastly, complexes II, III and IV are found to be thermosensitive and the bc1 complex exhibits greater sensitivity than the wild-type strain to center N and P inhibitors, suggesting that the three multisubunit complexes have undergone structural modifications. The data suggest that the ABC1 gene product acts as a chaperone-like protein essential for the proper conformation and efficient functioning of the bc1 complex and the effects of the Abc1 protein on the complexes II and IV might result from interactions with the modified bc1 complex.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Brasseur G, Tron G, Dujardin G, Slonimski PP, Brivet-Chevillotte P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference