Reference: Oetiker JH, et al. (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol Biol 34(2):275-86

Reference Help

Abstract


The key enzyme of ethylene biosynthesis, ACC synthase, is encoded by a multigene family. We describe three new DNA sequences encoding members of the ACC synthase family of the tomato. One of these sequences encodes a novel ACC synthase, LE-ACS6, which is phylogenetically related to the ACC synthases LE-ACS1A and LE-ACS1B. Gene-specific probes for seven tomato ACC synthase genes were prepared. They were used for RNase protection assays to study the accumulation of ACC synthase transcripts in suspension-cultured tomato cells after the addition of an elicitor. The ACC synthase genes LE-ACS2, LE-ACS5 and LE-ACS6 were strongly induced by the elicitor. In contrast, the genes LE-ACS1B, LE-ACS3 and LE-ACS4 were constitutively expressed and LE-ACS1B was present at all times at a particularly high level. Thus, there are two groups of ACC synthase transcripts expressed in these cells, either elicitor-induced or constitutive. A transcript of LE-ACS1A was not detected. Despite the presence of LE-ACS1B, LE-ACS2, LE-ACS3, LE-ACS4 and LE-ACS5, there was only little ethylene produced in the absence of the elicitor. Increased ethylene production is usually correlated with the accumulation of ACC synthase transcripts, indicating that ethylene production is controlled via the transcriptional activation of ACC synthase genes. However, the abundance of several ACC synthase mRNAs studied was not strictly correlated with the rate of elicitor-induced ethylene production. Our data provide evidence that the activity of these ACC synthases may not solely be controlled by the transcriptional activation of ACC synthase genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Oetiker JH, Olson DC, Shiu OY, Yang SF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence