Reference: Stoll VS, et al. (1997) Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Biochemistry 36(21):6437-47

Reference Help

Abstract


Trypanosoma and Leishmania, pathogens responsible for diseases such as African sleeping sickness, Chagas' heart disease, or Oriental sore, are two of the very few genera that do not use the ubiquitous glutathione/glutathione reductase system to keep a stable cellular redox balance. Instead, they rely on trypanothione and trypanothione reductase to protect them from oxidative stress. Trypanothione reductase (TR) and the corresponding host enzyme, human red blood cell glutathione reductase (GR), belong to the same flavoprotein family. Despite their closely related three-dimensional structures and although their natural substrates share the common structural glutathione core, the two enzymes are mutually exclusive with respect to their disulfide substrates. This makes the parasite enzyme a potential target for antitrypanosomal drug design. While a large body of structural data on GR complexes is available, information on TR-ligand interactions is very limited. When the two amino acid changes Ala34Glu and Arg37Trp are introduced into human GR, the resulting mutant enzyme (GRTR) prefers trypanothione 700-fold over its original substrate, effectively converting a GR into a TR [Bradley, M., Bücheler, U. S., & Walsh, C. T. (1991) Biochemistry 30, 6124-6127]. The crystal structure of GRTR has been determined at 2.3 A resolution and refined to a crystallographic R factor of 20.9%. We have taken advantage of the ease with which ligand complexes can be produced in GR crystals, a property that extends to the isomorphous GRTR crystals, and have produced and analyzed crystals of GRTR complexes with glutathione, trypanothione, glutathionylspermidine and of a true catalytic intermediate, the mixed disulfide between trypanothione and the enzyme. The corresponding molecular structures have been characterized at resolutions between 2.3 and 2.8 A with R factors ranging from 17.1 to 19.7%. The results indicate that the Ala34Glu mutation causes steric hindrance leading to a large displacement of the side chain of Arg347. This movement combined with the change in charge introduced by the mutations modifies the binding cavity, forcing glutathione to adopt a nonproductive binding mode and permitting trypanothione and to a certain degree also the weak substrate glutathionylspermidine to assume a productive mode.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Stoll VS, Simpson SJ, Krauth-Siegel RL, Walsh CT, Pai EF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference