Reference: Li H, et al. (1997) Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predicting the three-dimensional structure of murine homeodomain Msx-1. Protein Sci 6(5):956-70

Reference Help

Abstract


We have developed an automatic approach for homology modeling using restrained molecular dynamics and simulated annealing procedures, together with conformational search algorithms available in the molecular mechanics program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168). The accuracy of the method is validated by "predicting" structures of two homeodomain proteins with known three-dimensional structures, and then applied to predict the three-dimensional structure of the homeodomain of the murine Msx-1 transcription factor. Regions of the unknown protein structure that are highly homologous to the known template structure are constrained by "homology distance constraints," whereas the conformations of nonhomologous regions of the unknown protein are defined only by the potential energy function. A full energy function (excluding explicit solvent) is employed to ensure that the calculated structures have good conformational energies and are physically reasonable. As in NMR structure determinations, information on the consistency of the structure prediction is obtained by superposition of the resulting family of protein structures. In this paper, our homology modeling algorithm is described and compared with related homology modeling methods using spatial constraints derived from the structures of homologous proteins. The software is then used to predict the DNA-bound structures of three homeodomain proteins from the X-ray crystal structure of the engrailed homeodomain protein (Kissinger CR et al., 1990, Cell 63:579-590). The resulting backbone and side-chain conformations of the modeled yeast Mat alpha 2 and D. melanogaster Antennapedia homeodomains are excellent matches to the corresponding published X-ray crystal (Wolberger C et al., 1991, Cell 67:517-528) and NMR (Billeter M et al., 1993, J Mol Biol 234:1084-1097) structures, respectively. Examination of these structures of Msx-1 reveals a network of highly conserved surface salt bridges that are proposed to play a role in regulating protein-protein interactions of homeodomains in transcription complexes.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Li H, Tejero R, Monleon D, Bassolino-Klimas D, Abate-Shen C, Bruccoleri RE, Montelione GT
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference