Reference: Hoekstra MF (1997) Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr Opin Genet Dev 7(2):170-5

Reference Help

Abstract


In mammalian cells, four protein kinases form the PI3-kinase-related protein kinase (PIK) superfamily. These four enzymes-FRAP, DNA-PK, ATM, and ATR-are distinguished by their large size (all are >2500 amino acids), their common primary sequence relatedness through the carboxy-terminal protein kinase domain, and their sequence similarity to the p110 lipid kinase subunit of PI3-kinase. FRAP (FKBP12 and rapamycin-binding protein kinase) participates in mitogenic and growth factor responses in G1 and may regulate specific mRNA translation signals. DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ataxia telangiectasia and Rad 3 related) are thought to participate in responses to nuclear cues that activate DNA rearrangements or cell cycle arrests. Recent studies in this protein kinase family indicate an important role for ATM and ATR in a meiotic surveillance mechanism that may regulate proper chromosome transmission.

Reference Type
Journal Article | Review
Authors
Hoekstra MF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence