Reference: Carmelo V, et al. (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63-70

Reference Help

Abstract


The rapid in vivo activation of Saccharomyces cerevisiae plasma membrane H+-ATPase that has been attributed to medium acidification from pH 6.5 to pH 3.5 is not caused by the low pH itself but is induced by the weak organic acid (succinic) used as the acidulant. The activation induced by 50 mM succinic acid at pH 3.5 occurred in both the presence or absence of glucose. Activation at pH 3.5 was also induced by acetic acid and it was maximal at 50 mM concentration. To investigate the role of plasma membrane ATPase activation in pH homeostasis, the internal pH (cytosolic and vacuolar) of yeast cells incubated in media at pH 6.5 or at pH 3.5, acidified either with HCl or acetic acid, were compared by using in vivo (31)P-NMR. Despite plasma membrane ATPase activation by acetic acid, the decrease in cytosolic pH caused by external acidification was much more important when the permeant acetic acid was used instead of HCl as the acidulant. The supplementation of the incubation medium at pH 3.5 with glucose led to higher cytosolic pH values, consistent with the observed in vivo activation of plasma membrane ATPase by glucose. At the external pH value of 6.5 the vacuole was maintained at a mildly acidic pH (around 6) while the cytosol was at about neutral pH; however, when cytoplasmic pH decreased due to external acidification, vacuolar pH accompanied that decrease. Vacuolar pH reached 5.4-5.5 during incubation with HCI and dropped sharply to values below 4.4 in cells incubated with acetic acid. These results indicate that the vacuole also plays a role in homeostasis of the intracellular pH.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Carmelo V, Santos H, Sá-Correia I
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference