Reference: Rutenber EE and Stroud RM (1996) Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity. Structure 4(11):1317-24

Reference Help

Abstract


BACKGROUND: Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) by 5, 10-methylenetetrahydrofolate (CH2H4folate) to form deoxythymidine monophosphate (dTMP) and dihydrofolate (H2folate). The essential role of TS in the cell life cycle makes it an attractive target for the development of substrate and cofactor-based inhibitors that may find efficacy as anticancer and antiproliferative drugs. Antifolates that compete specifically with the binding of CH2H4 folate include the cofactor analog CB3717 (10-propargyl-5,8-dideazafolate). However, the development of potent cofactor analog inhibitors of TS, such as CB3717, as drugs has been slowed by their toxicity, which often becomes apparent as hepatic and renal toxicity mediated by the specific chemistry of the compound. Attempts to abolish toxicity in human patients while preserving potency against the target enzyme, have led to the development of ZD1694, which has already shown significant activity against colorectal tumours. RESULTS: The three dimensional crystallographic structure of ZD1694 in complex with dUMP and Escherichia coli TS has been determined to a resolution of 2.2 . This was used to evaluate the specific structural determinants of ZD1694 potency and to correlate structure/activity relationships between it and the closely related ligand, CB3717. ZD1694 binds to TS in the same manner as CB3717 and H2 folate, but a methyl group on its quinazoline ring, its thiophene ring and the methyl group at N10 are compensated for by plastic accommodation of the enzyme active site coupled with specific rearrangement in the solvent structure. A specific hydrogen bond between the protein and the inhibitor CB3717 is absent in the case of ZD1694 whose monoglutamate tail is reoriented and more well ordered. CONCLUSIONS: The binding mode of ZD1694 to thymidylate synthase has been determined at atomic resolution. ZD1694 forms a ternary complex with dUMP and participates in the multi-step TS reaction through the covalent bond formation between dUMP and Cys146 thereby competing with CH2H4 folate at the active site. Analysis of this inhibitor ternary complex structure and comparison with that of CB3717 reveals that the enzyme accommodates the differences between the two inhibitors with small shifts in the positions of key active site residues and by repositioning an active site water molecule, thereby preserving a general binding mode of these inhibitors.

Reference Type
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Rutenber EE, Stroud RM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence