Reference: Berghuis AM, et al. (1996) Structure of the GDP-Pi complex of Gly203-->Ala gialpha1: a mimic of the ternary product complex of galpha-catalyzed GTP hydrolysis. Structure 4(11):1277-90

Reference Help

Abstract


Background: G proteins play a vital role in transmembrane signalling events. In their inactive form G proteins exist as heterotrimers consisting of an alpha subunit, complexed with GDP and a dimer of betagamma subunits. Upon stimulation by receptors, G protein alpha subunits exchange GDP for GTP and dissociate from betagamma . Thus activated, alphasubunits stimulate or inhibit downstream effectors. The duration of the activated state corresponds to the single turnover rate of GTP hydrolysis, which is typically in the range of seconds. In Gialpha1, the Gly203-->Ala mutation reduces the affinity of the substrate for Mg2+, inhibits a key conformational step that occurs upon GTP binding and consequently inhibits the release of betagamma subunits from the GTP complex. The structure of the Gly203-->Ala mutant of Gialpha1 (G203AGialpha1) bound to the slowly hydrolyzing analog of GTP (GTPgammaS) has been determined in order to elucidate the structural changes that take place during hydrolysis.

Results: We have determined the three dimensional structure of a Gly203-->Ala mutant of Gialpha1 at 2.6 A resolution. Although crystals were grown in the presence of GTPgammaS and Mg2+, the catalytic site contains a molecule of GDP and a phosphate ion, but no Mg2+. The phosphate ion is bound to a site near that occupied by the gamma-phosphate of GTPgammaS in the activated wild-type alpha subunit. A region of the protein, termed the Switch II helix, twists and bends to adopt a conformation that is radically different from that observed in other Gialpha1 subunit complexes.

Conclusions: Under the conditions of crystallization, the Gly203-->Ala mutation appears to stabilize a conformation that may be similar, although perhaps not identical, to the transient ternary product complex of Gialpha1-catalyzed GTP hydrolysis. The rearrangement of the Switch II helix avoids a potential steric conflict caused by the mutation. However, it appears that dissociation of the gamma-phosphate from the pentacoordinate intermediate also requires a conformational change in Switch II. Thus, a conformational rearrangement of the Switch II helix may be required in Galpha-catalyzed GTP hydrolysis.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Berghuis AM, Lee E, Raw AS, Gilman AG, Sprang SR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference