Reference: Steger DJ and Workman JL (1996) Remodeling chromatin structures for transcription: what happens to the histones? Bioessays 18(11):875-84

Reference Help

Abstract


Activation of gene transcription in vivo is accompanied by an alteration of chromatin structure. The specific binding of transcriptional activators disrupts nucleosomal arrays, suggesting that the primary steps leading to transcriptional initiation involve interactions between activators and chromatin. The affinity of transcription factors for nucleosomal DNA is determined by the location of recognition sequences within nucleosomes, and by the cooperative interactions of multiple proteins targeting binding sites contained within the same nucleosomes. In addition, two distinct types of enzymatic complexes facilitate binding of transcription factors to nucleosomal DNA. These include type A histone acetyltransferases (e.g. GCN5/ADA transcriptional adaptor complex) and ATP-driven molecular machines that disrupt histone-DNA interactions (e.g. SWI/SNF and NURF complexes). These observations raise the important question of what happens to the histones during chromatin remodeling. We discuss evidence supporting the retention of histones at transcription factor-bound sequences as well as two alternative pathways of histone loss from gene control elements upon transcription factor binding: histone octamer sliding and histone dissociation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Steger DJ, Workman JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence