Reference: Roth AF and Davis NG (1996) Ubiquitination of the yeast a-factor receptor. J Cell Biol 134(3):661-74

Reference Help

Abstract


The a-factor receptor (Ste3p) is one of two pheromone receptors in the yeast Saccharomyces cerevisiae that enable the cell-cell communication of mating. In this report, we show that this receptor is subject to two distinct covalent modifications-phosphorylation and ubiquitination. Phosphorylation, evident on the unstimulated receptor, increases upon challenge by the receptor's ligand, a-factor. We suggest that this phosphorylation likely functions in the adaptive, negative regulation of receptor activity. Removal of phosphorylation by phosphatase treatment uncovered two phosphatase-resistant modifications identified as ubiquitination using a myc-epitope-tagged ubiquitin construct. Ste3p undergoes rapid, ligand-independent turnover that depends on vacuolar proteases and also on transport of the receptor from surface to vacuole (i.e., endocytosis) (Davis, N.G., J.L.Horecka, and G.F. Sprague, Jr., 1993 J. Cell Biol. 122:53-65). An end4 mutation, isolated for its defect in the endocytic uptake of alpha-factor pheromone (Raths, S., J. Rohrer, F. Crausaz, and H. Riezman. 1993. J. Cell Biol. 120:55-65), blocks constitutive endocytosis of the a-factor receptor, yet fails to block ubiquitination of the receptor. In fact, both phosphorylation and ubiquitination of the surfacebound receptor were found to increase, suggesting that these modifications may occur normally while the receptor is at the cell surface. In a mutant strain constructed to allow for depletion of ubiquitin, the level of receptor ubiquitination was found to be substantially decreased. Correlated with this was an impairment of receptor degradative turnover-receptor half-life that is normally approximately 20 min at 30 degrees C was increased to approximately 2 h under these ubiquitin-depletion conditions. Furthermore, surface residency, normally of short duration in wild-type cells (terminated by endocytosis to the vacuole), was found to be prolonged; the majority of the receptor protein remained surface localized fully 2 h after biosynthesis. Thus, the rates of a-factor receptor endocytosis and consequent vacuolar turnover depend on the available level of ubiquitin in the cell. In cells mutant for two E2 activities, i.e., ubc4 delta ubc5 delta cells, the receptor was found to be substantially less ubiquitinated, and in addition, receptor turnover was slowed, suggesting that Ubc4p and Ubc5p may play a role in the recognition of the receptor protein as substrate for the ubiquitin system. In addition to ligand-independent uptake, the a-factor receptor also undergoes a ligand-dependent form of endocytosis (Davis, N.G., J.L. Horecka, and G.F. Sprague, Jr. 1993. J. Cell. Biol. 122:53-65). Concurrent with ligand-dependent uptake, we now show that the receptor undergoes ligand-induced ubiquitination, suggesting that receptor ubiquitination may function in the ligand-dependent endocytosis of the a-factor receptor as well as in its constitutive endocytosis. To account for these findings, we propose a model wherein the covalent attachment of ubiquitin to surface receptor triggers endocytic uptake.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Roth AF, Davis NG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference