Reference: Yahraus T, et al. (1996) The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO J 15(12):2914-23

Reference Help

Abstract


In humans, defects in peroxisome assembly result in the peroxisome biogenesis disorders (PBDs), a group of genetically heterogeneous, lethal recessive diseases. We have identified the human gene PXAAA1 based upon its similarity to PpPAS5, a gene required for peroxisome assembly in the yeast Pichia pastoris. Expression of PXAAA1 restored peroxisomal protein import in fibroblasts from 16 unrelated members of complementation group 4 (CG4) of the PBD. Consistent with this observation, CG4 patients carry mutations in PXAAA1. The product of this gene, Pxaaa1p, belongs to the AAA family of ATPases and appears to be a predominantly cytoplasmic protein. Substitution of an arginine for the conserved lysine residue in the ATPase domain of Pxaaa1p abolished its biological activity, suggesting that Pxaaa1p is an ATPase. Furthermore, Pxaaa1p is required for stability of the predominantly cytoplasmic PTS1 receptor, Pxr1p. We conclude that Pxaaa1p plays a direct role in peroxisomal protein import and is required for PTS1 receptor activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence