The yeast cadmium factor gene (YCF1) from Saccharomyces cerevisiae, which was isolated according to its ability to confer cadmium resistance, encodes a 1,515 amino acid ATP-binding cassette (ABC) protein with extensive sequence homology to the human multidrug resistance-associated protein (MRP1) (Szczypka, M., Wemmie, J. A., Moye-Rowley, W. S., and Thiele, D. J. (1994) J. Biol. Chem. 269, 22853-22857). Direct comparisons between S. cerevisiae strain DTY167, harboring a deletion of the YCF1 gene, and the isogenic wild type strain, DTY165, demonstrate that YCF1 is required for increased resistance to the toxic effects of the exogenous glutathione S-conjugate precursor, 1-chloro-2,4-di-nitrobenzene, as well as cadmium. Whereas membrane vesicles isolated from DTY165 cells contain two major pathways for transport of the model compound S-(2,4-dinitrophenyl)glutathione (DNP-GS), an MgATP-dependent, uncoupler-insensitive pathway and an electrically driven pathway, the corresponding membrane fraction from DTY167 cells is more than 90% impaired for MgATP-dependent, uncoupler-insensitive DNP-GS transport. Of the two DNP-GS transport pathways identified, only the MgATP-dependent, uncoupler-insensive pathway is subject to inhibition by glutathione disulfide, vanadate, verapamil, and vinblastine. The capacity for MgATP-dependent, uncoupler-insensitive conjugate transport in vitro strictly copurifies with the acuolar membrane fraction. Intact DTY165 cells, but not DTY167 cells, mediate vacuolar accumulation of the quorescent glutathione-conjugate, monochlorobimane-GS. Introduction of plasmid borne, epitope-tagged gene encoding functional YCF1 into DTY167 cells alleviates the 1-chloro-2,4-dinitrobenzene-hypersensitive phenotype concomitant with restoration of the capacity of vacuolar membrane vesicles isolated from these cells for MgATP-dependent, uncoupler-insensitive DNP-GS transport. On the basis of these findings, the YCF1 gene of S. cerevisiae is inferred to encode an MgATP-energized, uncoupler-insensitive vacuolar glutathione S-conjugate transporter. The energy requirements, kinetics, substrate specificity, and inhibitor profile of YCF1-mediated transport demonstrate that the vacuolar glutathione conjugate pump of yeast bears a strong mechanistic resemblance to the MRP1-encoded transporter of mammalian cells and the cognate, but as yet molecularly undefined, function of plant cells.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
|---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
| Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Site | Modification | Modifier | Source | Reference |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
| Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
|---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
| Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
|---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
| Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
|---|