Reference: Pereira SA and Livi GP (1996) Aromatic amino-acid biosynthesis in Candida albicans: identification of the ARO4 gene encoding a second DAHP synthase. Curr Genet 29(5):441-5

Reference Help

Abstract


The primary step in the aromatic amino-acid biosynthetic pathway in Saccharomyces cerevisiae is catalyzed by two redundant isozymes of 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase, either of which alone is sufficient to permit growth on synthetic complete media lacking aromatic acids (SC-Aro). The activity of one isozyme (encoded by the ARO3 gene) is feedback-inhibited by phenylalanine, whereas the activity of the other isozyme (encoded by the ARO4 gene) is feedback-inhibited by tyrosine. Transcription of both genes is controlled by GCN4. We previously cloned the ARO3 gene from the opportunistic pathogen Candida albicans and found that: (1) it can complement an aro3 aro4 double mutation in S. cerevisiae, an effect inhibited by excess phenylalanine; and (2) its expression is induced in response to amino-acid deprivation, consistent with the presence of two putative GCN4-responsive promoter elements (Pereira and Livi 1993, 1995). To determine whether other DAHP synthases exist in C. albicans, we have constructed a homozygous aro3-deletion mutant strain. Such a mutant was found to be phenotypically Aro+, i. e., capable of normal growth on SC-Aro media, suggesting the presence of at least one additional isozyme. To confirm this result, a 222-bp DNA fragment was amplified by the polymerase chain reaction (PCR) from genomic DNA prepared from the homozygous aro3-deletion mutant, using a degenerate primer based on a conserved N-terminal region of Aro3p plus a degenerate comeback primer encoding a conserved region of the protein that lies within the deleted portion of the gene. The nucleotide sequence of this PCR fragment predicts a 74-amino acid DAHP synthase-related protein which shows strong homology to Aro3p from S. cerevisiae and C. albicans, but even greater homology (78% identity) to S. cerevisiae Aro4p. We conclude that cells of C. albicans contain a second Aro4p-related DAHP synthase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pereira SA, Livi GP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference