Reference: Morgan BA, et al. (1995) A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J 14(22):5679-89

Reference Help

Abstract


The transcription factors SBF and DSC1/MBF bind SCB and MCB promoter elements, respectively, and are essential for the cell cycle progression of Saccharomyces cerevisiae through the control of G1 cyclin gene expression. We isolated a gene (BRY1; Bacterial Response regulator in Yeast) able to activate either MCB or SCB promoter elements on a reporter plasmid which, when overexpressed, can bypass the normally essential requirement for SBF and DSC1/MBF by the stimulation of CLN1 and CLN2 expression. In the case of CLN2 at least, this expression depends upon the MCB and SCB promoter elements. In wild-type yeast, the disruption of BRY1 has no apparent phenotype, but under conditions where the activities of SBF and DSC1/MBF are reduced, BRY1 becomes essential. Our data imply the existence of a third pathway affecting cyclin expression. BRY1 is the same gene as SKN7 which has significant sequence homology to the receiver domains found in response regulator proteins from the bacterial two-component signal transduction pathways. SKN7 is thought to affect cell wall structure, and when highly overexpressed we find that BRY1/SKN7 is lethal perhaps because of perturbations in cell wall biosynthesis. The lethality is partially rescued by genes from the protein kinase C pathway, but genetic data imply that BRY1/SKN7 and protein kinase C are not in the same pathway. Our results suggest that Bry1/Skn7 can influence the expression of MCB- and SCB-driven gene expression in budding yeast, perhaps including genes involved in cell wall metabolism, via a two-component signal transduction pathway which activates Bry1/Skn7 in response to an unidentified signal.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Morgan BA, Bouquin N, Merrill GF, Johnston LH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence