Reference: Zhong T and Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73(6):1175-86

Reference Help

Abstract


The S. cerevisiae SIS1 gene is essential and encodes a heat shock protein with similarity to the bacterial DnaJ protein. At the nonpermissive temperature, temperature-sensitive sis1 strains rapidly accumulate 80S ribosomes and have decreased amounts of polysomes. Certain alterations in 60S ribosomal subunits can suppress the temperature-sensitive phenotype of sis1 strains and prevent the accumulation of 80S ribosomes and the loss of polysomes normally seen under conditions of reduced SIS1 function. Analysis of sucrose gradients for SIS1 protein shows that a large fraction of SIS1 is associated with 40S ribosomal subunits and the smaller polysomes. These and other results indicate that SIS1 is required for the normal initiation of translation. Because DnaJ has been shown to mediate the dissociation of several protein complexes, the requirement of SIS1 in the initiation of translation might be for mediating the dissociation of a specific protein complex of the translation machinery.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Zhong T, Arndt KT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence