Reference: Tomkinson AE, et al. (1993) Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 362(6423):860-2

Reference Help

Abstract


Damage-specific recognition and incision of DNA during nucleotide excision repair in yeast and mammalian cells requires multiple gene products. Amino-acid sequence homology between several yeast and mammalian genes suggests that the mechanism of nucleotide excision repair is conserved in eukaryotes, but very little is known about its biochemistry. In the yeast Saccharomyces cerevisiae at least 6 genes are needed for this process, including RAD1 and RAD10 (ref. 1). Mutations in the two genes inactivate nucleotide excision repair and result in a reduced efficiency of mitotic recombinational events between repeated sequences. The Rad10 protein has a stable and specific interaction with Rad1 protein and also binds to single-stranded DNA and promotes annealing of homologous single-stranded DNA. The amino-acid sequence of the yeast Rad10 protein is homologous with that of the human excision repair gene ERCC1 (ref. 3). Here we demonstrate that a complex of purified Rad1 and Rad10 proteins specifically degrades single-stranded DNA by an endonucleolytic mechanism. This endonuclease activity is presumably required to remove non-homologous regions of single-stranded DNA during mitotic recombination between repeated sequences as previously suggested, and may also be responsible for the specific incision of damaged DNA during nucleotide excision repair.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence