Reference: Stemp ED and Hoffman BM (1993) Cytochrome c peroxidase binds two molecules of cytochrome c: evidence for a low-affinity, electron-transfer-active site on cytochrome c peroxidase. Biochemistry 32(40):10848-65

Reference Help

Abstract


We have studied the affinity and stoichiometry of binding of cytochrome c (Cc) to zinc-substituted cytochrome c peroxidase [(ZnP)CcP], which is structurally and electrostatically equivalent to ferrous CcP. Transient absorption spectroscopy has been used to measure both the total quenching of the triplet-state (ZnP)CcP [3(ZnP)CcP] by Fe3+Cc and the fraction of that quenching that is due to electron transfer (et). This redox quenching results in the formation of an intermediate (I) containing the zinc porphyrin pi-cation radical [(ZnP)+CcP] and Fe2+Cc. In titrations of (ZnP)CcP with Fe3+Cc(F) at low ionic strength, where F represents the fungal cytochromes c from Candida krusei, Pichia membranefaciens, or the yeast protein iso-1, the appearance of the et intermediate lags behind the total quenching, with appreciable formation of I occurring only for Cc to CcP ratios > 1. This behavior results from the formation of a 2:1 complex, where one Fe3+Cc(F) binds to a high-affinity domain that exhibits strong quenching yet is et-inactive, while the second Fe3+Cc(F) binds to a low-affinity domain that allows efficient et quenching. At constant concentrations of both proteins, raising the ionic strength eliminates most of the et quenching but reduces the total quenching only minimally, confirming that et occurs preferentially at the low-affinity binding domain, which is the more sensitive to ionic strength. Analogous experiments also favor a 2:1 binding stoichiometry for horse Cc [Cc(horse)] at low ionic strength, with et quenching again proceeding much more favorably in the 2:1 complex than in the 1:1 complex, as with Cc(F). However, the Fe3+Cc(horse) quenches only by electron transfer, unlike the Cc(F). The decay of the triplet-state (ZnP)CcP or magnesium-substituted CcP [(MgP)CcP] was examined during titrations with Fe3+Cc to determine limits for the dissociation rate constant (koff) for the complex. Fe3+Cc(horse) bound to the high-affinity domain in a 1:1 complex at low ionic strength is in rapid exchange, with koff > 50 S-1, whereas Fe3+Cc(F) has koff < 200 s-1. Both types of Fe3+Cc have koff > 10(4)S-1 when they are bound to the low-affinity domain in a 2:1 complex, at both low and high ionic strengths. In contrast, when in the ferrous form, both types of Cc have much lower values of koff (< 10 S-1) at low ionic strength when bound to the low-affinity domain.(ABSTRACT TRUNCATED AT 400 WORDS)

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Stemp ED, Hoffman BM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference