Reference: Errede B, et al. (1993) MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362(6417):261-4

Reference Help

Abstract


Pheromone-stimulated haploid yeast cells undergo a differentiation process that allows them to mate. Transmission of the intracellular signal involves threonine and tyrosine phosphorylation of the redundant FUS3 and KSS1 kinases, which are members of the MAP kinase family. FUS3/KSS1 phosphorylation depends on two additional kinases, STE11 and STE7 (refs 2, 5, 6). Genetic analyses predict an ordered pathway where STE11 acts before STE7 and FUS3/KSS1 (refs 2, 7). Here we report that STE7 is a dual-specificity kinase that modifies FUS3 at the appropriate sites and stimulates its catalytic activity in vitro. From these data and previous genetic results, we argue that STE7 is the physiological activator of FUS3. Recent indications that MAP kinase activators are related to STE7 suggest that signal transduction pathways in many, if not all, eukaryotic organisms use homologous kinase cascades.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference