Reference: Saffran WA, et al. (1994) Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res 22(14):2823-9

Reference Help

Abstract


Single strand and double strand DNA damage-induced recombination were compared in the yeast Saccharomyces cerevisiae. The non-replicating plasmid pUC18-HIS3 was damaged in vitro and introduced into yeast cells; plasmid-chromosome recombinants were selected as stable His+ transformants. Single strand damage was produced by UV irradiation at 254 nm or by psoralen photoreaction at 390 nm. Double strand damage was produced by psoralen photoreaction at 350 nm or by restriction endonuclease digestion. Recombinants were classified as resulting from gene conversion without crossing over, single plasmid integration, or multiple plasmid integration. Single and double strand DNA damage produced different patterns of recombination. In repair proficient cells double strand damage induced primarily multiple plasmid integrations, while single strand damage induced higher proportions of gene conversions and single integrations. Reciprocal recombination depended on the RAD1 gene, which is involved in both excision repair and recombination; plasmid integration induced by all forms of damage was decreased in a rad1 disruption strain. Mutation of the RAD3 excision repair gene decreased plasmid integration induced by far UV irradiation and psoralen crosslinks, but not by double strand breaks, which are not substrates of nucleotide excision repair. Double strand break-induced plasmid integration was also decreased by disruption of RAD10, which forms a complex with RAD1; disruption of RAD4 had no effect. Thus, while nucleotide excision repair genes are involved in the processing of damaged DNA to generate recombination intermediates, RAD1 and RAD10 are additionally involved in reciprocal exchange.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Saffran WA, Greenberg RB, Thaler-Scheer MS, Jones MM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference