Reference: Sweeney TK, et al. (1976) A study of the transmission and structure of double stranded RNAs associated with the killer phenomenon in Saccharomyces cerevisiae. Genetics 84(1):27-42

Reference Help

Abstract


Killer strains contain two double stranded RNAs, L and M. The M dsRNA appears to be necessary for production of a toxin and for resistance to that toxin. Mutant strains have been found that are defective in their ability to kill and in their resistance to toxin. These sensitive, non-killer strains have altered dsRNA composition. One class has no M dsRNA. Another class of sensitive, non-killers called suppressives has no M dsRNA but instead has smaller dsRNAscalledS. Indiploidsresulting from a cross of a wild-type killer by a suppressive the transmission of the M dsRNA is suppressed by the S dsRNA. When a suppressive is crossed by a strain with no M dsRNA, the diploids and all four meiotic spores have the S dsRNA characteristic of the parental suppressive strain. Suppressive strains do not suppress each other. Intercrosses between two different suppressives yields diploids with both parental S dsRNAs. These two S dsRNAs are transmitted to all 4 meiotic progeny. Another class of mutants has been found which is defective for one of the traits but retains the other. One type, temperature-sensitive killers, has a normal dsRNA composition but is unable to kill at 30 degrees. The other type, immunity-minus, has a complex dsRNA pattern. The immunity-minus strain is extremely unstable during mitotic growth and segregates several different types of non-killers. Analysis of the dsRNAs from wild type and the mutants by electron microscopy shows that the L, M, and S dsRNAs are linear. All strains regardless of killer phenotype appear to have the same size L dsRNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Sweeney TK, Tate A, Fink GR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference