The crystal structures of the stable, closed complexes of chicken mitochondrial aspartate aminotransferase with the natural substrates L-aspartate and L-glutamate have been solved and refined at 2.4- and 2.3-A resolution, respectively. In both cases, clear electron density at the substrate-coenzyme binding site unequivocally indicates the presence of a covalent intermediate. The crystallographically identical environments of the two subunits of the alpha 2 dimer allow a simple, direct correlation of the coenzyme absorption spectra of the crystalline enzyme with the diffraction results. Deconvolution of the spectra of the crystalline complexes using lognormal curves indicates that the ketimine intermediates constitute 76% and 83% of the total enzyme populations with L-aspartate and L-glutamate, respectively. The electron density maps accommodate the ketimine structures best in agreement with the independent spectral data. Crystalline enzyme has a much higher affinity for keto acid substrates compared to enzyme in solution. The increased affinity is interpreted in terms of a perturbation of the open/closed conformational equilibrium by the crystal lattice, with the closed form having greater affinity for substrate. The crystal lattice contacts provide energy required for domain closure normally supplied by the excess binding energy of the substrate. In solution, enzyme saturated with amino/keto acid substrate pairs has a greater total fraction of intermediates in the aldehyde oxidation state compared to crystalline enzyme. Assuming the only difference between the solution and crystalline enzymes is in conformational freedom, this difference suggests that one or more substantially populated, aldehydic intermediates in solution exist in the open conformation. Quantitative analyses of the spectra indicate that the value of the equilibrium constant for the open-closed conformational transition of the liganded, aldehydic enzyme in solution is near 1. The C4' pro-S proton in the ketimine models is oriented nearly perpendicularly to the plane of the pyridine ring, suggesting that the enzyme facilitates its removal by maximizing sigma-pi orbital overlap. The absence of a localized water molecule near Lys258 dictates that ketimine hydrolysis occurs via a transiently bound water molecule or from an alternative, possibly more open, structure in which water is appropriately bound. A prominent mechanistic role for flexibility of the Lys258 side chain is suggested by the absence of hydrogen bonds to the amino group in the aspartate structure and the relatively high temperature factors for these atoms in both structures.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|