Reference: Tran-Dinh S, et al. (1995) A novel approach for investigating reaction mechanisms in cells. Mechanism of deoxy-trehalose synthesis in Saccharomyces cerevisiae studied by 1H-NMR spectroscopy. Eur J Biochem 228(3):727-31

Reference Help

Abstract


A new approach is proposed for investigating the mechanism of metabolite synthesis in cells. This method, based on the competition between various substrates, allows the flux along a pathway, which is normally independent of the concentration of the corresponding precursor in the external medium, to be divided into partial fluxes. In particular, the mechanism deoxy-trehalose synthesis in glucose-grown repressed Saccharomyces cerevisiae was studied, by 1H-NMR spectroscopy, using the competition between 2-deoxy-D-glucose (dGlc) and 2-fluoro-deoxy-D-glucose (FdGlc) with respect to hexokinase. S. cerevisiae cells, suspended in a standard pyrophosphate medium containing about 5 x 10(7) cells/ml, were incubated with 30 mM glucose and various concentrations of dGlc and FdGlc. Apart from dGlc6P and FdGlc6P, trehalose and the dissacharides relative to dGlc, i.e. dideoxy-trehalose (dGlc-dGlc) and deoxytrehalose (dGlc-Glc), are observed while their analogues relative to FdGlc (FdGlc-FdGlc, FdGlc-Glc) are surprisingly absent. For the same external concentration of dGlc and FdGlc, the internal concentration of FdGlc6P is about three times larger than that of dGlc6P. The ratio of the FdGlc6P and dGlc6P concentrations is independent of the incubation times and proportional to the FdGlc and dGlc concentrations in the suspension. The dGlc6P concentration can thus be reduced at will by increasing the [FdGlc]/[dGlc] ratio. Under these conditions, the dGlc-Glc concentration was found to vary linearly with that of dGlc6P. The present data clearly show that deoxy-trehalose is not synthesized from UDP-dGlc and Glc6P but from UDP-Glc and dGlc6P. This conclusion was also confirmed by an experiment in which S. cerevisiae cells were previously charged with dGlc6P and then incubated with glucose.

Reference Type
Journal Article
Authors
Tran-Dinh S, Wietzerbin J, Courtois A, Herve M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference