Reference: Wek SA, et al. (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15(8):4497-506

Reference Help

Abstract


Protein kinase GCN2 is a multidomain protein that contains a region homologous to histidyl-tRNA synthetases juxtaposed to the kinase catalytic moiety. Previous studies have shown that in response to histidine starvation, GCN2 phosphorylates eukaryotic initiation factor 2 (eIF-2), to induce the translational expression of GCN4, a transcriptional activator of genes subject to the general amino acid control. It was proposed that the synthetase-related sequences of GCN2 stimulate the activity of the kinase by interacting directly with uncharged tRNA that accumulates during amino acid limitation. In addition to histidine starvation, expression of GCN4 is also regulated by a number of other amino acid limitations. Questions that we posed in this report are whether uncharged tRNA is the most direct regulator of GCN2 and whether the function of this kinase is required to recognize each of the different amino acid starvation signals. We show that GCN2 phosphorylation of eIF-2, and the resulting general amino acid control pathway, is stimulated in response to starvation for each of several different amino acids, in addition to histidine limitation. Cells containing a defective aminoacyl-tRNA synthetase also stimulated GCN2 phosphorylation of eIF-2 in the absence of amino acid starvation, indicating that uncharged tRNA levels are the most direct regulator of GCN2 kinase. Using a Northwestern blot (RNA binding) assay, we show that uncharged tRNA can bind to the synthetase-related domain of GCN2. Mutations in the motif 2 sequence conserved among class II synthetases, including histidyl-tRNA synthetases, impair the ability of this synthetase-related domain to bind tRNA and abolish GCN2 phosphorylation of eIF-2 required to stimulate the general amino acid control response. These in vivo and in vitro experiments indicate that synthetase-related sequences regulate GCN2 kinase function by monitoring the levels of multiple uncharged tRNAs that accumulate during amino acid limitations.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Wek SA, Zhu S, Wek RC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference