Reference: Sommer SS and Wickner RB (1982) Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L. J Bacteriol 150(2):545-51

Reference Help

Abstract


We describe two sets of plasmid-plasmid interactions in the yeast Saccharomyces cerevisiae. [HOK], [EXL], [NEX], and [KIL-k1] are genetically defined plasmids, and M1 and L are biochemically defined double-stranded RNA plasmids. We show that (i) [HOK], [NEX], and the abundance of L are related, and (ii) under submaximal curing conditions, all colonies retaining M1 also retain L. There are three pieces of evidence that either [NEX] required [HOK] for replication or [NEX] and [HOK] are on the same plasmid. The evidence is as follows. (i) The great majority of strains containing [HOK] also contain [NEX]. However, two [HOK] [NEX-o] strains do exist. (ii) Growth at 39 degrees C or growth at 34 degrees C with 3% ethanol or 2-propanol cures [HOK] and [NEX]. In a [HOK] [NEX] strain, the two plasmids are always co-cured. (iii) [HOK] and [NEX] are both maintained in mak4, mak6, and mak27 strains (mak = maintenance of [KIL-k1]), but not in mak3, mak10, and pet18 strains. Strains containing [HOK] and [NEX] have about fourfold more L double-stranded RNA than their isochromosomal, cured derivatives. In addition, a cytoductant which has acquired [HOK] and [NEX] has fourfold more L than its parent. These results are consistent with either [HOK] being a form of L or [HOK] increasing the copy number of L. Using a K1 killer strain in which L, as well as M1, could be cured by growth at 38 degrees C, we examined the distribution of loss of M1 and L under conditions giving 98% M-o colonies and at least 50% L-o colonies. No M1L-o colonies were observed, supporting the previous suggestion by others that M1 requires L.

Reference Type
Journal Article
Authors
Sommer SS, Wickner RB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference