Reference: Dutcher SK (1981) Internuclear transfer of genetic information in kar1-1/KAR1 heterokaryons in Saccharomyces cerevisiae. Mol Cell Biol 1(3):245-53

Reference Help

Abstract


Heterokaryons of Saccharomyces cerevisiae have been constructed utilizing the kar1-1 mutation, which prevents nuclear fusion during conjugation (J. Conde and G. Fink, Proc. Natl. Acad. Sci. U.S.A. 73:3651-3655, 1976). Each heterokaryon contained two haploid nuclei that were marked on several chromosomes. They segregated haploid progeny (cytoductants), most of which have the nuclear genotype of one or the other of the heterokaryon parents, but they occasionally segregated progeny having a recombinant genotype (exceptional cytoductants). Exceptional cytoductants receive the majority of their genome from one parent (the recipient) and a minority from the other (the donor). Transfer of two markers from the donor nucleus to the recipient is rarely coincident for markers located on different chromosomes but is nearly always coincident for those markers located on the same chromosome, suggesting that whole chromosomes are transferred from the donor nucleus to the recipient. In crosses of kar1-1 X KAR1 parents, either nucleus may act as a recipient or donor with equal probability. Recipient nuclei acquired 9 of the 10 chromosomes examined, with frequencies which were inversely correlated with the size of the chromosome. When a chromosome is acquired by the recipient nucleus, it either replaces its homolog or exists in a disomic condition. Haploid progeny emanating from kar1 X KAR1 crosses are frequently inviable. I tested whether this inviability might be the result of chromosome loss by donor nuclei. Viability of progeny from kar1 X KAR1 heterokaryons was improved when the parental nuclei were diploid to an extent consistent with the hypothesis, and diploid progeny which had become monosomic were recovered from these heterokaryons. The following sequence of events accounts for chromosome transfer in kar1 X KAR1 heterokaryons. After cell fusion, each nucleus in the heterokaryon has a probability of about 0.38 of losing one or more chromosomes. A nucleus sustaining such a loss can become a donor in a chromosome transfer event. If the other nucleus does not sustain a mortal chromosome loss, it can become a recipient in a transfer event. The chance of acquiring a chromosome lost by the donor is greater for smaller chromosomes than for larger ones and is about 0.05 for the average chromosome.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Dutcher SK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference