Reference: Ades IZ and Butow RA (1980) The transport of proteins into yeast mitochondria. Kinetics and pools. J Biol Chem 255(20):9925-35

Reference Help

Abstract


By double isotope pulse-labeling of yeast cells, we determined the kinetics of labeling at 9 degrees C of total mitochondrial membrane, mitochondrial matrix, and cytosolic proteins, the alpha, beta, and gamma subunits of F1 ATPase, and glyceraldehyde-3-phosphate dehydrogenase. We find that none of the mitochondrial proteins show a lag in the incorporation of label compared to cytosolic proteins. These results argue against the existence in the cytosol of large pools of mitochondrial proteins awaiting transport into the organelle. Cycloheximide addition during the pulse stops [35S]methionine incorporation into mitochondrial membrane and cytosolic proteins rapidly (approximately 1 min) and with identical kinetics. Compared to cytosolic protein, however, there is a persistent incorporation of label into mitochondria after a chase with cold methionine (t1/2 approximately 1.5 min at 9 degrees C) which cannot be accounted for solely by chain completion. We conclude that this continued incorporation reflects some transport process in addition to a completion of a round of translation. When cells are labeled during a synchronous "restart" of protein synthesis, where ribosome run-off from mRNA was first induced either by incubating cells for 4 h at 0 degrees C or by treatment with 5 mM aurintricarboxylic acid, the initial rate of incorporation of label into mitochondrial protein now lags behind that of cytosolic proteins. From these results and those in the accompanying report (Ades, I.Z., and Butow, R.A. (1980) J. Biol. Chem. 255, 9918-9924) we propose that the translation of mRNA specific for mitochondrial proteins takes place in the cytoplasm and that at least a portion of the polysomes are then transported and bind to the outer mitochondrial membrane, followed by completion of translation and transfer of the newly synthesized polypeptides into the mitochondria. From a consideration of all of the available data on protein transport into mitochondria in yeast, we conclude that cytoplasmic polysomes bound to the outer mitochondrial membrane function in the transport of proteins into mitochondria by a process not necessarily mutually exclusive of post-translational transport.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Ades IZ, Butow RA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference