Reference: Emr SD, et al. (1984) Invertase beta-galactosidase hybrid proteins fail to be transported from the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Cell Biol 4(11):2347-55

Reference Help

Abstract


The yeast SUC2 gene codes for the secreted enzyme invertase. A series of 16 different-sized gene fusions have been constructed between this yeast gene and the Escherichia coli lacZ gene, which codes for the cytoplasmic enzyme beta-galactosidase. Various amounts of SUC2 NH2-terminal coding sequence have been fused in frame to a constant COOH-terminal coding segment of the lacZ gene, resulting in the synthesis of hybrid invertase-beta-galactosidase proteins in Saccharomyces cerevisiae. The hybrid proteins exhibit beta-galactosidase activity, and they are recognized specifically by antisera directed against either invertase or beta-galactosidase. Expression of beta-galactosidase activity is regulated in a manner similar to that observed for invertase activity expressed from a wild-type SUC2 gene: repressed in high-glucose medium and derepressed in low-glucose medium. Unlike wild-type invertase, however, the invertase-beta-galactosidase hybrid proteins are not secreted. Rather, they appear to remain trapped at a very early stage of secretory protein transit: insertion into the endoplasmic reticulum (ER). The hybrid proteins appear only to have undergone core glycosylation, an ER process, and do not receive the additional glycosyl modifications that take place in the Golgi complex. Even those hybrid proteins containing only a short segment of invertase sequences at the NH2 terminus are glycosylated, suggesting that no extensive folding of the invertase polypeptide is required before initiation of transmembrane transfer. beta-Galactosidase activity expressed by the SUC2-lacZ gene fusions cofractionates on Percoll density gradients with ER marker enzymes and not with other organelles. In addition, the hybrid proteins are not accessible to cell-surface labeling by 125I. Accumulation of the invertase-beta-galactosidase hybrid proteins within the ER does not appear to confer a growth-defective phenotype to yeast cells. In this location, however, the hybrid proteins and the beta-galactosidase activity they exhibit could provide a useful biochemical tag for yeast ER membranes.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Emr SD, Schauer I, Hansen W, Esmon P, Schekman R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference