Reference: Roeder GS and Fink GR (1980) DNA rearrangements associated with a transposable element in yeast. Cell 21(1):239-49

Reference Help

Abstract


The his4-912 mutation results from insertion of a 6200 bp transposable element into the his4 gene of yeast. In order to clone the his4-912 mutation, the plasmid pBR322 was integrated into the his4 gene by means of yeast transformation, and then the vector sequences and the his4-912 insertion element were excised as a single restriction fragment. This his 4-912 insertion element is homologous to Ty1, a family of repetitive yeast DNA sequences. His+ revertants derived from the his4-912 mutant carry a number of chromosomal aberrations including deletions, translocations, a transposition and an inversion. The majority of His+ revertants result from deletions which have both endpoints within the element and which leave behind only 300 bp of the insertion element. Other derivatives of the his4-912 mutant carry deletions which have one endpoint in the insertion element and one endpoint in the his4 coding sequence. In two His+ revertants carrying reciprocal translocations, the chromosome III translocation breakpoints occur within the his4-912 insertion element. A His+ revertant carrying an inversion of most of the left arm of chromosome III may be an intermediate in transposition of the his4-912 insertion element to a new site on chromosome III.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Roeder GS, Fink GR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence