Reference: Kakinuma Y, et al. (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae. J Biol Chem 256(21):10859-63

Reference Help

Abstract


The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kakinuma Y, Ohsumi Y, Anraku Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference