Reference: Maheshwari KK and Marzuki S (1985) Defective assembly of the mitochondrial ribosomes in yeast cells grown in the presence of mitochondrial protein synthesis inhibitors. Biochim Biophys Acta 824(4):273-83

Reference Help

Abstract


The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in the presence of mitochondrial protein synthesis inhibitors erythromycin and chloramphenicol. Yeast cells grown in the presence of erythromycin (2 mg/ml) do not appear to contain any detectable amounts of the mitochondrial small (37 S) ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S was observed; this particle could be shown to be related to the mitochondrial small ribosomal subunit by two-dimensional gel electrophoretic analysis of its protein components. Since the var1 protein is the only mitochondrial translation product known to be associated with the mitochondrial ribosome, our results suggest that this protein is essential for the assembly of the mature small subunit, and that the var1 protein enters the pathway for the assembly of the small subunit at a late step. In at least one strain of yeast the accumulation of the 30-S particle appears to be very sensitive to catabolite repression. When yeast cells are grown in the presence of chloramphenicol instead of erythromycin, assembly of the small subunit appears to be only partially inhibited, and the presence of the 30-S particle could not be clearly demonstrated. This observation is consistent with the fact that in yeast, chloramphenicol inhibits mitochondrial protein synthesis by about 95% only and that the synthesis of the var1 protein appears to be the least sensitive to this inhibition.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Maheshwari KK, Marzuki S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference