Reference: Hickert LR, et al. (2024) Strategies on aroma formation in Chardonnay sparkling base wine: Different Saccharomyces cerevisiae strains, co-inoculation with Torulaspora delbrueckii and utilization of bentonite. Biotechnol Appl Biochem 71(1):96-109

Reference Help

Abstract


The worldwide production of sparkling wines has been growing annually, driven by a market demand for high quality and more complex products. The present study aimed to evaluate the fermentation of Chardonnay must using two different Saccharomyces cerevisiae yeasts, either alone (from commercial brands A and B) or in combination with Torulaspora delbrueckii (ScA + Td and ScB + Td, respectively), as well as the addition of bentonite to the fermentation with ScA (ScA + Ben), to investigate their impact on aroma formation in sparkling base wine. Enological parameters, volatile composition, and sensory profile were evaluated. The results showed notable differences in total sulfur dioxide and volatile acidity among the S. cerevisiae strains. Moreover, the esters ethyl acetate, isoamyl acetate, hexyl acetate, and phenethyl acetate showed significant differences among treatments. Esters are recognized for their contribution to fruity and floral aromas, making them an essential part of the aromatic profile of wines. The descriptive analysis revealed that ScB + Td had the highest intensity of floral and tropical fruit notes, as well as aromatic clarity. The use of bentonite did not affect the aromatic composition or sensory profile of the wine. Therefore, the co-inoculation of S. cerevisiae with T. delbrueckii can lead to a base wine with a higher intensity of important volatile compounds and sensory attributes, providing an important alternative to produce winery products with a more complex aroma profile.

Reference Type
Journal Article
Authors
Hickert LR, Cattani A, Manfroi L, Wagner R, Furlan JM, Sant'Anna V
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference