Reference: Bunthawin S, et al. (2023) Using dielectrophoretic spectra to identify and separate viable yeast cells. Appl Microbiol Biotechnol 107(24):7647-7655

Reference Help

Abstract


Immotile yeast cells were transiently moved in nonuniform sinusoidal electric fields using multiple pairs of micro-parallel cylindrical electrodes equipped with a sequential signal generator (SSG) to analyze cell viability at a clinical scale for the brewery/fermentation industry. Living yeast cells of Saccharomyces cerevisiae during the exponential-stationary phase, with a cell density of 1.15 × 105 cells mL-1 were suspended in sucrose medium. The conductivity (σs) was adjusted to 0.01 S m-1 with added KCl. Cells exposed in electric field strengths ranging from 32.89 to 40.98 kV m-1, exhibited positive dielectrophoresis (pDEP) with the lower critical frequencies (LCF) at 85.72 ± 3.59 kHz. The optimized value of LCF was shifted upwards to 780.00 ± 83.67 kHz when σswas increased to 0.10 S m-1. Dielectrophoretic and LCF spectra (translational speed of cells vs. electric field frequencies) of yeast suspensions during positive dielectrophoresis were analyzed in terms of the dielectric properties of the cell membrane and cytoplasm which reflect yeast cell viability and metabolic health status. The dielectrophoretic collection yield of cells using positive dielectrophoresis was reported on the monitor of sequential signal generator software to evaluate the number of living and dead cells through a real-time image processing analyzer. The spectra of both positive dielectrophoresis of the living and dead cells had distinguishable dielectric properties. The conductivity of the yeast cytoplasm (σc) of the dead cells was significantly less (≈ ≤ 0.05 S m-1) than that of the living yeast cells which typically had a cytoplasmic conductivity of ≈ 0.2 S m-1. This difference between viable and non-viable cells is sufficient for cell separation procedures. KEY POINTS: • Dielectrophoresis can be used to separate viable and non-viable yeast cells, • Cellular dielectric properties can be derived from the analysis of their dielectric spectra, • Cytoplasmic conductivity of viable cells is ≈ 0.2 S m-1 while that of non-viable cells ≈ ≤ 0.05 S m-1.

Reference Type
Journal Article
Authors
Bunthawin S, Srichan P, Jaruwongrungsee K, Ritchie RJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference